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Abstract

Simultaneous small angle X-ray scattering (SAXS) and force measurements have been recorded during tensile deformation of two

contrasting polyurethane elastomers. The elastomers comprise the same hard and soft chemical segments; in Sample A, the length of the hard

blocks is randomised while in Sample B the hard blocks are monodisperse. During deformation of Sample A, the SAXS halo from the

mesophase structure deforms to an ellipse with intensification on the meridian. In Sample B, the halo transforms into a four point pattern. The

ellipse patterns of A are interpreted in terms of a model based on particles located on a statistical lattice which is subjected to an affine

deformation scheme. According to this model, the SAXS patterns of A are consistent with the hard phase regions behaving as embedded

particles which separate from each other in an affine manner and which are not impeded by interconnections during the mechanical yield

process. In B, the interconnection of the hard phase prevents affine deformation of the structure and involves the formation of a four point

‘lattice’ structure which then subsequently deforms in an affine manner. The differences in behaviour are linked with the segment sequencing

which result in the phase regions of Sample A having a lower volume fraction and are consistent with variation in applied stress. q 2002
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1. Introduction

Poly(urethane) elastomers are synthesised in the

simultaneous condensation co-polymerisation of three

components: a polyol—a generic term for a hydroxyl

terminated poly(ether), poly(ester) or poly(alkyl) chain of

intermediate molecular weight (1000–6000 g/mol); a

diisocyanate; and a chain extender. The result is an

(AB)n type segmented chain architecture with relatively

short but numerous A and B segments. The A segments,

which are built from alternating sequences of chain

extender and diisocyanate molecules, are referred to as

‘hard‘ segments. The B segments are known as ‘soft’

segments and originate from the polyol. It has been

established [1–3] that at a certain point in time the

growing hard segments phase separate in a spinodal

mechanism from the soft segments. This results in the

formation of a mesophase structured polymer containing

glassy, hard domains and rubbery, soft domains where

the respective glass transition temperatures are above and

below the normal service temperatures of the polymer.

When all the components of the polyurethane are

difunctional, the resulting polymer becomes thermoplastic

allowing the material to be melt or solvent processed.

The exact nature of the final morphology is uncertain and

depends on the fabrication route as well as the molecular

formulation [4] and involves ripening of the spinodal

driven phase separation process. The size scale of the

density fluctuations of the mesophase morphology is

closely linked to the characteristic molecular dimensions

of the hard and soft segments and is of the order of

10 nm, thus allowing the morphology to be monitored by

small angle X-ray scattering (SAXS).

Despite their versatility for a wide range of uses,

applications of thermoplastic polyurethanes are still limited

by their relatively high mechanical hysteresis compared

with other elastomers. This hysteresis and the associated

mechanical loss processes can be partly attributed to the

breakdown and reformation of the mesophase morphology

during mechanical cycling. Over the years there has been a
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continuing interest in the impact of mechanical deformation

on the mesophase structure in segmented linear poly-

urethanes. Ryan et al. [5] reviewed the general morphology

principles in urethane elastomers derived from X-ray and

other methods. Koberstein in 1983 discussed the details of

the domain structure and the boundary thickness between

the hard and soft domains from SAXS and DSC measure-

ments [6,7]. The earliest papers on PU deformation focused

on the modulus versus temperature behaviour and hinted

that the enhanced modulus could be ascribed to the glassy

state of the phase separated hard blocks acting as ‘fillers’ for

the elastomeric blocks [8 – 11]. Very early on, the

orientation behaviour of urethane and urea block copoly-

mers under uniaxial extension was studied by X-ray

diffraction and infrared dichroism. Bonart [12,13] was

amongst the first to identify the orientation of the periodic

microphase structure under tensile deformation. Later

Desper et al. [14] using data collected on Kratky and

pinhole cameras, identified different modes of deformation

depending upon the shape and structural integrity of the

hard block domains in which the mesophase structure

deforms either by local shearing or local tensile deformation

of the soft segments. Structure–property relations in

moulded plaques of flexible polyurethane foams were

investigated by Moreland and Wilkes [15] by IR dichroism.

They identified a two-step orientation–elongation mechan-

ism. The region below 50% elongation was associated with

low hysteresis in which lamella-like hard domains aligned

along the strain direction in a more or less reversible

manner. Above 50% elongation, the hard domains are

disrupted, with individual hard segments being pulled away

from the hard domains. Later the importance of hard

segment length distribution was recognised. Eisenbach et al.

[16,17] synthesised and characterised polyurethane elasto-

mers with monodisperse hard segment length distributions.

Also Musselman et al. [18] synthesised and characterised

with SAXS and DSC a series of poly(urethaneurea)

elastomers derived from toluene diisocyanates prepolymers.

Via this specific route, elastomers with better defined, less

polydisperse hard segment lengths were obtained. These

elastomers had higher tensile moduli and improved

mechanical properties compared with corresponding con-

ventional PU elastomers with polydisperse hard segment

length distributions [19].

As with much of these previous studies, the present paper

shares the aim of providing insight into property improve-

ment by understanding how the morphology and its

evolution is controlled by the chemical building blocks of

the material and by deformation processes. The paper

describes experiments on thermoplastic polyurethane

elastomers involving the simultaneous measurement of the

two-dimensional (2D) SAXS patterns and the stress during

tensile deformation, using synchrotron X-ray sources. This

study was carried out on two contrasting polyurethanes that

had been synthesised from the same components but with

different distributions of hard and soft block lengths. These

materials provide a contrast both between the initial

morphologies and between the nature of the evolution of

the morphologies during the mechanical deformation cycle,

thus giving an insight into the mechanisms contributing to

mechanical loss. In the experiments, the samples have been

subjected to a repeated extension and retraction cycle

beyond the yield point. This paper is primarily concerned

with the initial extension and with analysing changes in the

mesophase morphology that occur during yield (draw ratio

,1.1) and during subsequent extension up to draw ratios

.2. Further work is in progress to analyse the structural

changes that are associated with hysteresis during the

repeated extension and retraction cycle.

Several analytical approaches are being used on the data

to elucidate the nature of both the starting morphologies and

how the morphologies change during deformation. Past

studies of mesophase morphology have often interpreted

SAXS in terms of lamellar domains as a conceptual aid to

understand the data [14,18]. However, the approach used in

this paper is to avoid any presumptions based on such

specific structural models. The analyses in this paper

combine an evaluation of generally applicable parameters

with a novel empirical approach based on the affine

deformation concept [20].

2. Experimental

2.1. Samples

The two polyurethane samples used in this study were

synthesised from the same building blocks. The basic soft

block units are derived from Dupont ‘Terethane1000’ which

is a a,v-dihydroxy poly(tetrahydrofurane) of nominal

molecular weight 1000 g/mol21; GPC analysis indicates

that Mw=Mn ¼ 1:4: The hard segments consisted of

mixtures of toluene 2,4-diisocyanate (TDI), 4,40-methyle-

nediphenyleneisocyanate (MDI) and ethanolamine (EA) in

a molar ratio ¼ 2:1:2. For both samples, the relative

proportions of components were equivalent to a hard

segment content of ,42 wt% which is equivalent to

,36 vol%.

Sample A was synthesised in a one shot solvent process in

dried dimethylacetamide. All chemicals were at once mixed

at the same time in the solvent to encourage a randomised

reaction of components so as to produce a polydispersity in

the lengths of both the hard and soft blocks.

Sample B was synthesised in a series of systematic steps

so as to form monodispersed alternating hard blocks of

TDI – EA – MDI – EA – TDI and soft blocks of one

poly(THF) diol unit. The structure of the hard segments is

shown in Scheme 1 and has a molecular weight of 720 g/mol.

This structure can also be regarded as the statistical average

structure of the polydisperse hard blocks in Sample A.

The polymers were cast from a solution with
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dimethylacetamide into 0.7 mm thick sheets, dried and then

post annealed at 80 8C for 24 h.

2.2. Static SAXS of undeformed samples

One-dimensional (1D) SAXS data from the isotropic,

undeformed samples were collected on beamline 2.1 at the

Daresbury SRS using a quadrant detector. The data was

analysed using established procedures [21] assuming that

the tail at large values of the scattering vector q can be

approximated by

I
q!1

¼
Kp

q4
exp 2

E2q2

12

 !
þ B ð1Þ

where B is the background contribution from density

fluctuations and is assumed to be constant over the

measured q-range, Kp the Porod constant that characterises

the asymptotic behaviour at high q and E is a measure of the

thickness of the interface between mesophase regions [22].

The intensity was calibrated by reference to a secondary

standard Lupolen sample that had been previously

calibrated at the Oak Ridge National Laboratory [23].

After subtraction of the background B, the intensity data

was used to derive the Invariant quantity Inv:

Inv ¼
1

2p2

ð1

0
IðqÞq2 dq ð2Þ

This information was used to derive the Porod chord length

parameter, lp [24]

lp ¼
8pInv

Kp

ð3Þ

2.3. Real time SAXS experiments

The real time deformation experiments were carried out

using a purpose designed stretching camera [25,26] that had

been constructed in the Keele Physics Department work-

shops. The jaws of the camera were connected to separate

stepping motors that could be programmed to a predeter-

mined deformation cycle. For some of the present

experiments, the camera was modified by incorporating a

100 N load cell into one of the jaw assemblies to enable the

stretching force to be monitored. The camera had a viewing

port that enabled the deformation of the samples to be

recorded on a synchronised video signal.

Ten-millimeter wide strips were cut from the poly-

urethane sheets and mounted in the jaws of the camera with

an effective gauge length of around 17 mm. The samples

were subjected to a pre-programmed linear, loading cycle

during which SAXS patterns were recorded with sequential

frames every 3.2 s. This is equivalent to a strain rate of

around 0.01 s21. Although all the samples were subjected to

the same nominal deformation cycle, there were small

differences in the clamping which resulted in some variation

in the actual draw ratios achieved in each experiment.

Therefore, 1 mm separated stripes were drawn on the

sample at right angles to the draw axis to enable the actual

strain to be deduced from the video image.

The camera assembly was used to record two series of

experiments using synchrotron X-ray sources. The first

series was carried out at the Daresbury SRS with a

wavelength of 0.14 nm using beamline 16.1 with the

RAPID area detector and with the load cell assembly

installed. The second series used the ID2A SAXS beamline

at the ESRF in Grenoble using the CCD detector and a

wavelength of 0.0995 nm. There were differences in the

configuration and beam monitoring facilities between the

SRS and the ESRF. These differences had advantages and

disadvantages for particular analyses. There was consist-

ency between experiments in the SAXS patterns at each

level of draw ratio so the most favourable data set was

therefore chosen for each analysis.

2.4. Analysis of 2D patterns

After correcting for detector characteristics and subtract-

ing the instrumental background, the data sets were

analysed with macro routines to determine the loci and

peak intensities of the diffraction halos.

In order to evaluate the invariant integrals from the 2D

patterns, axial symmetry was assumed. The calculations

were based on one of the quadrants that did not contain

spurious data from the beam stop support. Accordingly the

Scheme 1.
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invariant integral will be proportional to

Inv / 4p
ð1

0

ðp=2

0
ðIobsðf; qÞ2 BÞsinðfÞdf

 !
q2 dq ð4Þ

where Iobs is the observed intensity which is a function of the

scattering vector q and azimuthal angle f and B is the

sample background scatter due to random density fluctu-

ations and for convenience it is taken to be a constant.

The internal integral in f was evaluated as a first step to

reduce the relationship to the form

Inv / 4p
ð1

0
ðIqðqÞ2 BÞq2 dq ð5Þ

For convenience it was assumed that Porod’s Law was

applicable so that for large values of q

lim
q!1

ðIq 2 BÞ ¼
A

q4
ð6Þ

where A is a constant.

The constants A and B were evaluated by curve fitting in

the high q region starting at a q value at twice that of the

diffraction peak. The level of signal to noise was not

sufficient to enable the high q data to be analysed for the

effects of a finite interface between phases.

3. Results

As indicated above in Section 2, the SAXS experiments

were carried out at both the SRS and ESRF using different

beamline configurations, resulting in data sets covering

different ranges of q. The results and analyses reported and

discussed here are selected from the data sets that are

optimum for each type of analysis.

The static, 1D SAXS data of the undeformed samples are

shown in Fig. 1. There are clear differences in the

periodicity and in the degree of order between the samples,

with Sample A having the larger periodicity and sharper

diffraction peak. The higher degree of apparent order in

Sample A could be a consequence of a greater degree of

ripening of the structural organisation from the spinodal

decomposition process.

Table 1 summarises some of the parameters derived from

an analysis of these data. There is a significant difference in

the invariant integral which is expected to be due to

differences in the volume fraction and composition of the

hard and soft phases. The interface thickness between the

mesophase regions is relatively narrow and indicates that

reasonable short range ripening has occurred.

The variation in tensile force recorded during defor-

mation in both samples during the SRS experiments are

shown in Fig. 2. In order to aid comparison with the SAXS

data, the force is plotted against the equivalent SAXS frame

number, where each frame is equivalent to 3.2 s. The draw

ratio attained in these experiments at frame 55 is 2.3:1. Both

samples show very similar behaviour in the shape of the

force variation with a yield process at around draw ratio 1.1

corresponding to frame 5. This is followed by a more linear

response starting at around the point corresponding to a

draw ratio of about 1.25, corresponding to frame 10.

However, as shown in the more detailed plot in Fig. 3, the

initial slopes are significantly different and are equivalent to

moduli of 83 and 130 MPa for Samples A and B,

respectively.

Selected SAXS frames from these SRS experiment are

shown in Figs. 4 and 5. There is a very marked difference

between the two samples in the way the SAXS patterns

develop during the loading cycle. The differences resemble

those observed between the different formulations of

polyurethanes studied by Desper et al. [14].

During tensile loading, the diffraction halo of Sample A

intensifies on the meridian and becomes progressively

elliptical in shape. Within experimental error, the diffraction

halos for all of the patterns of Sample A follow the locus of

an ellipse (i.e. x2=a2 þ z2=b2 ¼ 1). This can be confirmed

from plots of x 2 versus z 2 as in the examples in Fig. 6,

where z is in the vertical draw direction and x is in the lateral

direction.

The behaviour of Sample B is distinctly different.

Fig. 1. Static 1D SAXS of undeformed elastomer samples: fine line ¼

Sample A, bold line ¼ Sample B.

Fig. 2. Variation in tensile force from SRS experiment: bold line ¼ Sample

A, fine line ¼ Sample B. Each frame corresponds to a time interval of 3.2 s.
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Although a slight ellipticity develops during the first

extension, the main effect is an off-axis intensification

producing a ‘four point’ pattern in which there is a

systematic movement in the position of the four points

with the degree of sample deformation.

The results of the invariant integration from the ESRF

experiments, which are shown along with the applied draw

ratio in Fig. 7, also reveal differences in behaviour. In the

case of Sample A, there is a decrease with increasing

deformation whereas Sample B shows a small increase.

4. Discussion

4.1. Affine deformation in Sample A

An elliptical locus can be derived from a circle by an

affine deformation; i.e. a deformation in which all x and z

coordinates are systematically multiplied by constants fx

and fz, respectively. It is therefore of interest to enquire

whether the elliptical shapes of the halos for Sample A can

be directly linked with an affine deformation of the two-

phase structure in the specimen. Assuming that poly-

urethane elastomers deform at close to constant volume,

then during uniaxial tensile deformation of draw ratio l the

length of the sample will change by l while the lateral

dimensions will change by a factor of 1/
p
l. If the two-phase

microstructure follows an affine deformation scheme related

to the overall sample shape then the x and z coordinates of a

vector between any two structural elements in real space

will be modified by the same factors. In such a situation, the

corresponding intensity function in reciprocal space will

also deform affinely but with factors that are the inverse of

those in real space. Thus x and z coordinates of vectors in

reciprocal space will be changed by factors of fx ¼
p
l and

fz ¼ 1=l; respectively. If the circular halo of the unde-

formed specimen has a radius x0 ð¼ z0Þ then x=x0 ¼
p
l and

z=z0 ¼ 1=l: This hypothetical situation can be partially

tested on the experimental data by plotting the two

parameters ðx=x0Þ
2 and z0=z versus l. As shown in Fig. 8,

the data points closely follow the value of l up to a draw

ratio of around 1.25. Beyond this the data points diverge and

indicate a larger degree of ellipticity than that predicted for

affine deformation. The point of the divergence corresponds

Table 1

Summary of parameters derived from static, 1D SAXS data

Parameters Sample A Sample B

Peak Bragg spacing (nm) 11 7.2

Invariant (nm24) from Eq. (2) 6.8 £ 1029 9.3 £ 1029

Interface thickness, (E, nm) from Eq. (1) 0.3 0.5

Porod chord length, (lp, nm) from Eq. (3) 2.6 3.6

Mean chord length of hard phase (lH, nm) from Eq. (9) 4.1 5.6

Fig. 3. Variation in tensile force from SRS experiment during initial

deformation: bold line ¼ Sample A, fine line ¼ Sample B. Each frame

corresponds to a time interval of 3.2 s.

Fig. 4. Selected SAXS patterns from the SRS data of Sample A for frames

1, 10, 18, 30, 40 and 55.

Fig. 5. Selected SAXS patterns from the SRS data of Sample B for frames 1,

10, 18, 30, 40 and 55.

Fig. 6. Plots of loci of intensity maxima around the elliptical patterns for

SRS data of Sample A: A ¼ frame 20; K ¼ frame 55.
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to the onset of the more linear strain response in Fig. 2 and

suggests there may be a link with the way in which the

microstructure deforms.

Up until this point there is therefore an indication that the

main features of the microstructure are deforming in a way

that is related to an affine scheme. However, one needs to

examine the implications of this for the nature of the phase

morphology. In a true affine deformation, every feature and

shape of the phase morphology would need to deform in an

affine manner. In an associated way all the features of the

corresponding intensity function in reciprocal space would

undergo a reciprocal affine deformation. Thus, a circular

diffraction halo with uniform intensity would deform to an

oblate ellipse that also had a uniform intensity. This is

clearly not the case for the observed elliptical halos in Fig. 4

where there is a very marked intensification on the meridian.

One can conclude therefore that, despite the ellipticity being

consistent with affine deformation of the periodicities within

the structure, the shapes of the microphases are not

themselves following the true affine scheme.

4.2. Statistical particulate model

The above conclusion is not surprising if one bears in

mind the composition of the polyurethane elastomer. It is

unrealistic to expect the above true affine model to hold

since the hard and soft phases have quite different

mechanical properties. The hard microphase regions will

resist changes in shape while the soft phase will tend to

change shape to accommodate the hard phase. When the

hard phase is in the minority, as in this specimen, the degree

of connectivity of the hard phase will be reduced. One

would therefore expect that the larger concentrations of hard

phase will be more able to retain their original shapes during

the deformation of the macroscopic sample. It is therefore of

interest to consider a modified affine model in which the

hard microphase regions can effectively be represented by

separated particulate inclusions embedded in a continuous

soft phase and to ignore regions of connectivity between the

hard phase concentrations. Assume therefore that during

deformation, the relative positions of the hard phase

particles with respect to each other move affinely but the

shapes of the particles remain unchanged. In this model the

particles represent the main concentrations of hard phase

and will vary in shape and size. The contrast between true

affine and the modified affine deformation is shown in Fig. 9

for the simplified case of spherical particles.

The diffraction halo will result from the interference

between waves scattered from this statistical arrangement of

particles. Making the analogy with standard crystallogra-

phy, one can consider the particles to be located on

statistical lattice points. The observed intensity along any

given scattering direction will therefore be the product of a

particle function (PF) and a lattice function (LF). In the

undeformed, isotropic state, LF will be centrosymmetric.

During deformation the statistical lattice points will move

according to the affine scheme. The LF will then vary with

direction in such a way that the profile of LF will deform in

an affine manner that is the reciprocal of the deformation of

the real-space, statistical lattice. In contrast, PF will be

isotropic and will remain unchanged during deformation.

Accordingly, the peak intensity of the observed intensity

Fig. 7. Variation of invariant integral (Eq. (4)) from ESRF experiment:

A ¼ Sample A; K ¼ Sample B; full line ¼ draw ratio. Each frame

corresponds to a time interval of 3.2 s.

Fig. 8. Plots versus draw ratio for Sample A from SRS experiment, showing

the relationship with the affine deformation scheme: A ¼ x2=x2
0; K ¼ z0=z;

full line ¼ predicted affine behaviour.

Fig. 9. Illustration of particulate model showing differences between pure

affine deformation and modified affine deformation.
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halo in any particular direction will be determined by the

value of PF at the peak scattering vector of LF. This is

analogous to the crystallography of perfect crystals where

the intensity of each discrete crystalline reflection is due to

the sampling of the structure factor of the unit cell at each

reciprocal lattice point. As an illustrative example of a

statistical lattice consider the simple case in which the

periodic regularity in any particular direction is represented

by a 1D lattice factor (LF) in the form of a Zernike–Prins

term [27]

LF ¼
ð1 2 lFl2Þ

ð1 2 2lFl cosðqdÞ þ lFl2Þ
ð7Þ

where F ¼ expð2q2g2d2=2Þ; and d the periodic repeat and g

is the fractional deviation of the distribution of projected

distances between scatterers.

Also for simplicity, assume that the hard phase inclusions

can be represented by identical spheres of radius R with a

particle scattering factor [28]

PF ¼
9ðsinðRqÞ2 Rq cosðRqÞÞ2

ðRqÞ6
ð8Þ

The predicted intensity is the product of the LF and PF

terms. During deformation, the periodic distance d will vary

with direction according to an affine scheme causing the

q-radius at the peak of the halo to vary with direction in a

reciprocal way. The intensity around the halo will be

determined by the value of PF at the q value of the peak in

that direction. Fig. 10 shows a predicted SAXS pattern

expected for an affine deformed sample for the particular

case where the sphere radius is 0.4 of the average periodic

repeat, the deviation g is 0.25 of the periodic repeat and the

draw ratio l ¼ 1:4:

Fig. 11 shows how the LF and PF contribute to the

intensity of the elliptical halo along the meridian and

equator axes.

Fig. 10 reasonably reproduces the features of the

observed SAXS patterns of Sample A. If one accepts this

approach for interpreting the experimental patterns then one

can consider the corollary of the argument that the intensity

variation around the ellipse gives direct information of the

structure factor of the particles located on the statistical

lattice. (Interestingly, the exact form of LF does not need to

be known providing the positions of the statistical lattice

points deform affinely.) Fig. 12 shows the variation of

intensity as a function of the square of the radii for frame 10,

plotted on a log scale. This plot is equivalent to a Guinier

plot for the scattering particles [29] plotted between the

limits of the major and minor axes of the elliptical halo. A

linear fit to these points indicates that the effective radius of

gyration of the particles is 2.7 nm. Identical spherical

particles with this radius of gyration would have a diameter

of 6.9 nm. Bearing in mind the dispersity in size expected

for the equivalent particles that represent the hard phase

concentrations in this model, this derived particle dimension

is sensibly consistent with the 11 nm periodic repeat of the

undeformed diffraction halo and with the hard segment

volume fraction derived from the chemical composition. It

is also consistent with the derived chord length parameter,

lp. If the volume fraction of the hard phase is f, then mean

chord intercept length through the hard phase regions will

be

lH ¼
lp

1 2 f
ð9Þ

As indicated in Table 1, if the hard phase occupies the

nominal volume fraction of all the hard segments ð¼ 0:36Þ;
then lH is 4.1 nm. If one assumes for simplicity that the hard

phase regions can be represented by identical spheres, then

the equivalent diameter of the spheres [24] will be

1.5 £ 4.1 ¼ 6.15 nm. This is in good agreement with the

above estimate derived from Fig. 12 and substantiates the

Fig. 10. Example of a predicted SAXS pattern for the model of spherical

particles located on a deformed statistical lattice calculated from Eqs. (7)

and (8), assuming R ¼ 0:4d; g ¼ 0:25 and l ¼ 1:4:

Fig. 11. Contributions of LF (Eq. (7)) and PF (Eq. (8)) for predicted pattern

in Fig. 10: solid line ¼ LF on meridian; dashed line ¼ LF on equator;

W ¼ PF.
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concept of the particulate model. It is of interest to note that

the intensification on the meridian can be accounted for in

this particulate model without needing to specify hard phase

domains with lamella-like shape, as in the previous study by

Desper et al. [14].

4.3. Deviations from particulate model

The deviation of the plots in Fig. 8 beyond a draw ratio of

around 1.25 indicates a change in the relative movement of

the phase morphology away from affine deformation.

However, the fact that the halo retains an elliptical shape

also implies that the deformation of the morphology must

continue to retain some degree of affine character. The

behaviour at higher draw ratios can be explored by

considering the apparent affine character in terms of two

fictive parameters which can be defined directly from the

observed ellipticity. For major and minor radii x and z, one

can define a fictive draw ratio lf and a fictive radius zf that

can be associated with the circular halo of a fictive

undeformed morphology. From the expectations of affine

deformation already discussed above

lf ¼
zf

z
¼

x

xf

� �2

ð10Þ

hence since xf ¼ zf

lf ¼
x

z

� �2=3

and zf ¼ z1=3x2=3 ð11Þ

The deviation from actual affine deformation can then be

investigated from the ratios of the fictive to the actual

parameters

Rd ¼
lf

l
ð12Þ

and

Rz ¼
zf

z0

ð13Þ

Fig. 13 shows a plot of these ratios together with the

variation in the applied stress. Up to frame 10 covering the

region just beyond the yield process, the ratios are close to

unity showing that the morphology is following an affine

deformation scheme, as already shown by Fig. 8. Beyond

this point and despite the deviation shown in Fig. 8, Rd

continues close to unity showing that the fictive draw ratio

continues to follow the applied draw ratio. The main effect

beyond frame 10 is in Rz, indicating a reduction in zf. This

behaviour can be rationalised, as follows, in terms of the

above particulate model. The hard phase regions, which are

represented in the model by the particles, will be of varying

size and stability. The smaller, less stable regions could be

eliminated under the influence of the higher localised stress

experienced at higher draw ratios. This would increase the

mean distance between the remaining particles and hence

move the position of correlation peaks to a lower q, thus

reducing zf. However the remaining, more stable particles

would continue to separate from each other in an affine

manner that is consistent with the applied draw ratio.

4.4. Deformation of four point pattern in Sample B

The development of the four point pattern in Sample B

indicates the formation of a more structured relationship

between the hard phase regions during the deformation

process. The four point feature first becomes resolvable at a

draw ratio of around 1.12 in the region of the yield process

in the stress–strain curves. This indicates that the yield is

closely associated with the formation of a new structural

arrangement that facilitates the compliance of the material.

In order to characterise these more complex patterns,

measurements were therefore made as in Fig. 14 of the

coordinates px and py of the four point maxima as well as the

ellipticity, defined by the major and minor axes.

This analysis was carried out on a data set from the ESRF

where the q range was more favourable for this measure-

ment. A plot of the two ellipticity parameters, ðx=x0Þ
2 and

z0/z, versus l is shown in Fig. 15. Unlike the case of Sample

A, the parameters fail to follow the affine deformation

Fig. 12. Variation of peak intensity versus ellipse radius for frame 15 of

Sample A, plotted in the form of a Guinier plot.

Fig. 13. Plots for Sample A of fictive parameter ratios defined by Eqs. (12)

and (13): K ¼ Rd; A ¼ Rz; continuous line ¼ force variation. Each frame

corresponds to a time interval of 3.2 s.
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scheme, even at the smallest degree of deformation. This

indicates that the connectivity of the hard phase is resisting

the affine separation of the hard phase domains and that the

domains are moving to an alternative mutual arrangement

which favours macroscopic yielding and which is linked

with the four point diffraction feature. After its initial

appearance, the four point feature develops in prominence

and changes in shape. A plot of the coordinates of the

maximum in intensity is shown in Fig. 16 in terms of the

ratio parameters ðpx=px0Þ
2 and pz0/pz. In this plot, px0 and pz0

are the coordinates of the maximum at the initial appearance

of the four point pattern in frame 4 at a draw ratio of 1.12. It

will be noted that there is a region up to around frame 15

where these two sets of parameters superpose in a linear

manner and thereafter tend to diverge. Also shown plotted in

this figure is the macroscopic draw ratio. Although the

region of linear superposition is displaced from the draw

ratio plot, the slope is similar to the macroscopic draw ratio.

There is, therefore, an hint here that the rearranged structure

that is associated with the four point pattern may be

deforming in a systematic way analogous to that observed

with Sample A. The four point pattern can be considered as

a lattice of higher symmetry which represents the corre-

lations of the hard phase regions after the rearrangement.

From the point of view of continuing deformation past the

yield, the new arrangement should be considered as a new

starting point. Accordingly, one should consider the degree

to which subsequent deformation beyond a draw ratio of

1.12 follows an affine scheme. It is therefore more

appropriate to compare the ðpx=px0Þ
2 and pz0=pz parameters

with a rescaled draw ratio ¼ l=1:12: As shown in Fig. 16,

there is then a good agreement between both parameters and

the rescaled draw ratio. This shows that the new structural

arrangement of the hard phase regions has components that

deform affinely in the immediate region beyond the

mechanical yield process up to a draw ratio of around 1.4.

However, beyond this, there is a trend in the four point

pattern to stabilise so that beyond a draw ratio of around 2.0,

there is little change in the position of the four point

maxima.

4.5. Variations in invariant integral

Samples A and B have been synthesised from the same

chemical building blocks. The difference between them is in

the length distribution of the blocks. In Sample A there is a

near random distribution of blocks whereas in Sample B,

both the hard and soft blocks are monodisperse in sequence.

If the partition of the hard and soft segments into hard and

soft domains had been the same then the invariant integrals

for two-phase morphologies would also be expected to be

the same, irrespective of actual morphology and would be

given by

Inv ¼ fð1 2 fÞDr2
e ð14Þ

where f is the volume fraction of the hard phase domains,

and Dre is the difference in electron density between the

hard and soft phases.

The smaller invariant of Sample A which is shown in

Table 1 suggests that because of the polydispersity, some of

Fig. 14. Characterisation scheme for parameters measured from patterns of

Sample B.

Fig. 15. Plots versus draw ratio for Sample B from ESRF experiment,

showing relationship with the affine deformation scheme: A ¼ x2=x2
0; K ¼

z0=z; full line ¼ predicted affine behaviour. Each frame corresponds to a

time interval of 3.2 s.

Fig. 16. Plots for Sample B from ESRF experiment of the position of the

maxima of the four point patterns in relation to draw ratio and rescaled draw

ratio: A ¼ px2=px2
0; K ¼ pz0=pz; dashed line ¼ actual draw ratio; continu-

ous line ¼ rescaled draw ratio. Each frame corresponds to a time interval of

3.2 s.
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the hard segments have been incorporated into the soft

phase domains thus reducing both f and Dre. The extent of

the incorporation can be estimated if one assumes that the

electron densities of each phase are directly related to the

amount of hard and soft segments distributed in each phase.

Thus, if the modified volume fraction is f0 then it can be

shown by simple proportionality that the modified invariant

Inv0 will be given by:

Inv0

Inv
¼

f0

f

ð1 2 fÞ

ð1 2 f0Þ
ð15Þ

On the basis of Eq. (15), the observed reduction of the

invariant of Sample A by a factor of 0.73 relative to that of

Sample B would infer that the nominal hard phase volume

of 0.36 has been reduced to around 0.30 in Sample A. Such a

reduction in f could partly explain the lower initial modulus

of Sample A.

Several authors have noted that the modulus of such

polyurethanes can be reasonably represented by the Davies

equation [30–32]

G1=5 ¼ fAG
1=5
A þ fBG

1=5
B ð16Þ

where fA and GA are the volume fractions and modulus of

phase A and similarly for fB and GB.

Davies [33] derived Eq. (16) using a self-consistent field

theory to account for two-phase materials where there was a

degree of continuity between phases. According to Eq. (16),

a reduction in f from 0.36 to 0.3 would reduce the modulus

by around 60%, which is comparable with the observed 64%

lower modulus in Fig. 3.

A reduction in f would also be expected to reduce the

degree of connectivity between hard phase domains. This

would be consistent with the difference in deformation

behaviour of the phase morphologies. The reduced connec-

tivity in Sample A would facilitate the hard domains moving

relatively to each other in an affine way as in the above

particulate model. A greater degree of connectivity would

provide more resistance, as in Sample B.

The small reduction in the invariant during deformation

of Sample A shown in Fig. 7 could also be the result of a

reduction in hard phase volume fraction. This would be

consistent with the above speculations on the reduction in

the fictive parameter zf which can be interpreted as an

elimination of smaller hard phase domains under the

influence of higher localised stresses. According to Eq.

(15), the observed reduction of invariant would suggest an

elimination of 0.02 volume fraction of hard domains. By an

analogous reasoning, the small increase in invariant for

Sample B shown in Fig. 8 would suggest a growth in hard

phase domains by a similar amount. It is therefore a

possibility that, when the morphology of Sample B

‘stabilises’ at high draw ratios, conditions may favour a

small degree of accretion of hard segments.

4.6. Implications of analyses

The above analyses of the developing SAXS patterns

provide a strong indication of both the manner of

deformation of the mesophase morphology and the nature

of the initial morphologies themselves. There are clear

differences between the two samples which originate from

the polydispersity of the hard and soft blocks. The difference

in phase volume fractions that is indicated by the invariant

of the undeformed states is an important factor, that not only

contributes to differences in modulus but also leads to

different consequences after yielding.

The lower hard phase volume in Sample A is not

unexpected. The polydispersity in the hard block lengths

will result in some of the shorter blocks being incorporated

in the soft mesophase regions. The resulting lower phase

volume will reduce the probability of connectivity between

hard domains. This helps to explain why the SAXS patterns

of Sample A can so successfully be interpreted via the

particulate affine model in which the concentration of hard

phase regions can be approximated to particles that separate

from each other in an affine manner. The analysis implies

that any such connections do not significantly impair the

movement of the main hard phase concentration during the

initial deformation. This appears to hold even during

the mechanical yielding process where it is presumed that

any such connections will be broken.

The behaviour of Sample B is indicative of a much more

substantial connectivity of the hard phase regions. The

connectivity resists the affine separation of the hard phase

regions during the yield process and causes the morphology

to deform into a more structured arrangement that appears to

aid compliance, possibly by involving localised shear of the

morphological units. This rearranged structure has a

symmetry which effectively forms a crude lattice. After

yielding, there is a range of deformation where this lattice

itself deforms affinely. The analysis on this level is not able

to define the nature of the morphology that is represented by

this crude, deforming lattice. One can speculate that the hard

phase may at this stage resemble lamellae or a series of

localised, linked particles.

Differences between the samples also occurs at higher

draw ratios .1.5. In Sample A there is evidence that the

main particulate concentrations of hard phase continue to

separate in an affine way but with the smaller, less stable

domains being eliminated. In Sample B, the crude lattice

appears to approach a stabilised arrangement that none-

theless enables considerable extra, uniform extension to

occur. One possibility is that this behaviour involves a

combination of continuous elimination of hard phase in

regions of high local stress and reformation of hard phase in

regions of lower stress, such that the overall morphology

remains similar.

The above conclusions are broadly in agreement with

various interpretations of previous studies [15,17,18].

Further experiments and analyses are now in progress to
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determine the degree to which the changes in morphology

are dependent on the degree of strain imposed during

mechanical cycling.

5. Conclusions

The analysis of the deforming SAXS patterns has not

only provided information on the deforming morphology. It

has also given additional insight into the nature of the

undeformed morphology that could not be anticipated from

the isotropic, undeformed SAXS. The two samples exhibit

contrasting behaviour which are a consequence of the

differences in sequence distribution. Both cases show

examples where the main features of the intensity function

in reciprocal space undergo an affine deformation consistent

with the deformation of the samples in real space.

In Sample A where the sequence lengths are randomised,

the affine deformation is consistent with the hard phase

domains behaving as particles located on a statistical lattice.

The affine deformation of the lattice points occurs from the

initial state and continues through the mechanical yield

process up to draw ratios ,1.25. This implies that any hard

phase connectivity, which would be broken down during the

yielding, does not impede the affine movement of the hard

domains. At high draw ratios there is evidence that the less

stable domains are progressively eliminated.

In Sample B where the sequence lengths are mono-

disperse, the hard phase domains have a more substantial

connectivity which prevents initial affine behaviour. The

breakdown in the connectivity at yield is associated with a

re-organisation of hard domains into a more structured

morphology that gives rise to four point maxima in

reciprocal space. In this sample, it is the four point feature

that deforms in an affine manner consistent with the real

space deformation up to draw ratios ,1.5. At higher draw

ratios there is a trend to an asymptotic arrangement that

enables the sample morphology to accommodate the higher

strain. It is a possibility that this involves a continuous

breakdown and reformation of hard phase regions.
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